
A Practical Detailed Placement Algorithm under
Multi-Cell Spacing Constraints

Yu-Hsiang Cheng, Ding-Wei Huang, Wai-Kei Mak, and Ting-Chi Wang

Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan, 300

{slightencheng,nba23098,awkmak,tcwang.nthu}@gmail.com

簡報者
簡報註解
Hi everyone, I’m Yu-Hsiang Cheng, the first author of this paper.
I’m so honored for being here sharing our work, a practical DP Algo. under MCSC.
Without further ado, let’s get started.

Agenda
․ Motivation

․ Preliminaries

․ Our Approach
 Overall Flow
 Constraint & Layout Analysis
 Fast Violation Recognition (FVR)
 Intra-Row Move (IRM)

 SRDP
 Cost Object
 Extensions for Mixed-Cell-Height Designs
 Acceleration

 Global Move (GM)

․ Experiment Setup & Results

․ Conclusion

2

簡報者
簡報註解
Agenda. I will introduce the motivation of this paper first, then define some terms and problem statement.
Next, I will illustrate our approach. Then sharing our experimental results. And finally, conclude this paper.

Motivation (1/2)

․Multi-cell spacing constraints arise due to manufacturing issues of aggressive
technology scaling

․In sub-10nm nodes, we may impose multi-cell spacing constraints for pin
accessibility problem

3

簡報者
簡報註解
A multi-cell spacing constraint, you can consider it as a generalized 2-cell spacing/abutment constraint, which is
users can specify 2 cells or 2 types of cells Let say AND OR cell pair.
Whenever the tool finds an AND OR cell pair on the layout, it will separate them apart from a specified distance.
This 2-cell constraint is well-handled by existing commercial tools.
However, a multi-cell spacing constraint says “only if a group of cells being put together, then there is a violation”

For example, we can address pin accessibility problem using this multi-cell spacing constraint in sub 10 nm nodes.
In the figure below, you can see 3 cells abutted together. The middle cell is pinched by all its neighbors, such that we can not grow metals above the bottom pin.
So, it can not be accessed.

However, either we break the first pair apart or the second pair apart a little bit. We can grow a metal above the pin. It becomes accessable.

Motivation (2/2)

․Abstractly, a multi-cell spacing constraint addresses a forbidden pattern containing
multiple cells.

․A naïve 2-cell method divides a multi-cell spacing constraint into several 2-cell
constraints. However, it will lead to overkills.

4

簡報者
簡報註解
So, abstractly. …..
The figure below is an abstraction of the previous example, where only if cell A B C abutted together, then there is a violation.
However, only A B abut or B C abut is ok.

A intuitive 2 cell method is to divide each multi-cell spacing constraint into several 2-cell constraint and use existing 2-cell method to solve it, but it will lead to overkills.

Our Contributions

․We propose a fast violation recognition (FVR) approach to rapidly find all constraint
violations on a given layout.

․We propose a practical approach to perform detailed placement considering
multi-cell spacing constraints.

1. Constraint & Layout Analysis
2. Intra-Row Move (Dynamic Programming-based)
3. Global Move (Integer Linear Programming-based)

․By cell virtualization and movable region computation techniques, we can extend
our intra-row move to handle mixed-cell-height designs without constructing a
different dynamic programming model.

5

簡報者
簡報註解
The contributions are listed below.
….
…
Finally, the best part of it.
We easily extend our approach to handle mix cell height designs without creating a different DP recurrence formula.

Definitions (1/3)

․Segment
 The left and right edges of a cell are divided into one or more segments of one-row

height long, depending on the cell height

․Segment Type
 Each segment is associated with 0 or 1 segment type

6

Type File

AND

XOR2

BUF

OR

Different colors
represent different
segment types

簡報者
簡報註解
Let’s define some terms.

You can think some segements of some cells would be given a color.
And when we specify a constraint, we specify on colored segment, not cell types.

Definitions (2/3)

․Condition
 A condition states that two specific segment types from two horizontally adjacent cells

in a layout is less than a specified distance apart

․Constraint & Constraint Violation
 A multi-cell spacing constraint is an ordered conjunction of multiple conditions
 A constraint violation occurs ⟺ ∃ a group of cells on the given layout that makes all

conditions in the constraint hold

7

< y< x

A B C

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

Constraint File

Constraint segments
may be in given order
from left to right, or vice
versa

簡報者
簡報註解
Then, a condition holds if ….
For example, ….
As you can imagine, a constraint consists of multiple conditions.
A constraint violation on a layout occurs if and only if there exists a group of cells make all conditions hold.

Multi-Cell Spacing Constraint Example

8

No overlap!

Constraint File

< y< x

A B C

Possible Violations

OR

BUF
XOR2

< y< x

AND

< y< x

< x< y

AND BUF

Type File

AND

XOR2

BUF

OR

< y< x

Allowable Patterns

OR

XOR2

< y< x

< y≥ x

< y

AND BUF

≥ y< x

簡報者
簡報註解
Here is an example.
We are given a type file, specify some colored segments.
A constraint file, specify the rules on those colored segments.

Definitions (3/3)

․Cell Pair
 We call two horizontally adjacent cells a cell pair

․Hit Pair
 A hit pair of a condition is a cell pair whose corresponding segment types match those

specified in the condition.
 e.g., hit pairs of Condition 1: (AND, BUF) and (OR, BUF), …
 e.g., hit pairs of Condition 2: (BUF, OR) and (BUF, XOR2), …

9

< y< x

A B C

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

Constraint File Type File

AND

XOR2

BUF

OR

簡報者
簡報註解
Let’s skip this

Problem Statement

․Given
 a non-overlapping initial placement of a mixed-cell-height design
 a set of segment types of cells
 a set of multi-cell spacing constraints

․Refine the placement such that
1. The number of constraint violations (i.e., forbidden patterns on layout) is minimized.
2. Some other objectives such as total cell displacement and/or wirelength increase are

minimized.

10

簡報者
簡報註解
So our problem is like this.
…

Overall Flow

11

Non-Overlapping
Design

• Constraint File
• Type File

Constraint
and Layout

Analysis

Intra-Row
Move (IRM)

(Dynamic
Programming)

Global Move
(GM)

(Integer Linear
Programming)

Refined
Design

簡報者
簡報註解
The flow is shown here

Overall Flow

12

Non-Overlapping
Design

• Constraint File
• Type File

Constraint
and Layout

Analysis

Intra-Row
Move (IRM)

(Dynamic
Programming)

Global Move
(GM)

(Integer Linear
Programming)

Refined
Design

Constraint and Layout Analysis (Critical Condition)

․For each condition 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, we define its breaking
cost 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 as follows.

𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �
∀𝑐𝑐𝑐𝑐∈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝐻𝐻𝐻𝐻

max(0, 𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐))

 𝑐𝑐𝑝𝑝: a cell pair in the layout
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝐻𝐻𝐻𝐻: set of hit pairs of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 : required spacing of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐): current spacing of 𝑐𝑐𝑝𝑝

․For constraint 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, its critical condition is
the one with minimum 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 among all its
conditions

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = arg min
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

i.e., easiest to break in current layout

13

A Constraint

< 2< 5

A B C

Critical Condition!

3 1

1

AND OR BUF

3

A Simple Layout

1 2 3 4

5 6 7 8 9

𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = max 5 − 3,0 +
max 5 − 1,0

= 2 + 4 = 6

𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = max 2 − 1,0 +
max(2 − 3,0)

= 1 + 0 = 1

簡報者
簡報註解
For each constraint, we find the condition easiest to break in the current layout and call it a critical condition.
For each condition, we calculate its corresponding breaking cost by accumulating the spacing deficit on the layout.
The critical condition is the condition with the minimum breaking cost.

We will use this information in the later stages.

Fast Violation Recognition (FVR) (1/2)

․We want to
 rapidly find all multi-cell spacing constraint violations on the given layout
 tag all active critical cell pairs that make any critical condition hold

․Time complexity: 𝑂𝑂 𝑛𝑛𝑛𝑛
 n: total #cells
 t: total #conditions

14

簡報者
簡報註解
Throughout this paper, we need to find and calculate the number of remaining constraint violations often times.
So fvr comes up. We only need polytime to find all vioaltions.

․For a constraint with k conditions, use
 a k-bit integer variable as a flag
 a queue to record order of occurrence

․Example
 Constraint 1 = cond1∙cond2∙cond3
 Constraint 2 = cond4∙cond5
cond1: S < 3, (AND,AND)/(AND,XOR)
cond2: S < 5, (AND,OR)
cond3: S < 3, (OR,FF)
cond4: S < 4, (AND,AND)
cond5: S < 3, (FF,AND)

15

FFAND AND OR

Fast Violation Recognition (FVR) (2/2)

Initialization
FLAG1: 0 0 0
FLAG2: 0 0

(AND,AND, spacing = 2)
FLAG1: 1 0 0 (enqueue 1)
FLAG2: 1 0 (enqueue 1)

(AND,OR, spacing = 4)
FLAG1: 1 1 0 (enqueue 2)
FLAG2: 0 0 (empty queue)

(OR,FF, spacing = 1)
FLAG1: 1 1 1 (all 1 && correct order => #Vios++)
=> 0 1 1 (dequeue)
FLAG2: 0 0

(OR,FF, spacing = 6)
FLAG1: 0 0 0 (empty queue)
FLAG2: 0 0

簡報者
簡報註解
The concept is, for each constraint, we create a k-bit integer as a flag.
A bit stands for the corresponding condition holds or not.
A bit is set to1 if the corresponding condition holds. Otherwise 0.
By this way, we can quickly find all violations on the layout.

Overall Flow

16

Non-Overlapping
Design

• Constraint File
• Type File

Constraint
and Layout

Analysis

Intra-Row
Move (IRM)

(Dynamic
Programming)

Global Move
(GM)

(Integer Linear
Programming)

Refined
Design

Intra-Row Move: SRDP (1/2)

․Perform SRDP on a row each time
 Allow flipping, shifting, and adjacent swapping

 Time Complexity: 𝑂𝑂 𝑛𝑛𝑀𝑀2

 𝑛𝑛: #cells in this row
 𝑀𝑀: max shifting amount

 3 cases
 Case 1

17

𝑝𝑝𝑝𝑝(𝑐𝑐1, … , 𝑐𝑐𝑘𝑘−1) 𝑐𝑐𝑘𝑘

𝑝𝑝𝑝𝑝(𝑐𝑐1, … 𝑐𝑐𝑘𝑘−2) 𝑐𝑐𝑘𝑘−1 𝑐𝑐𝑘𝑘

𝑝𝑝𝑝𝑝(𝑐𝑐1, … 𝑐𝑐𝑘𝑘−3) + 𝑐𝑐𝑘𝑘−1 𝑐𝑐𝑘𝑘−2 𝑐𝑐𝑘𝑘

𝑑𝑑, 𝑓𝑓

𝑑𝑑, 𝑓𝑓𝑑𝑑∗, 𝑓𝑓∗

min
∀−𝑀𝑀≤𝑑𝑑∗≤+M

∀𝑓𝑓∗∈
R0
𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀
𝑅𝑅𝑅𝑅𝑅

𝑑𝑑, 𝑓𝑓𝑑𝑑∗, 𝑓𝑓∗
MX and R180 are
forbidden for odd
row-height cells

簡報者
簡報註解
We perform single-row dynamic programming row by row.
We have 3 operations.
Note that these operations are not mutually exclusive. That is, we can simultaneously swap a cell and also flip and move it.

Intra-Row Move: SRDP (2/2)

18

𝑝𝑝𝑝𝑝 𝑐𝑐1, … , 𝑐𝑐𝑘𝑘−2 + 𝑐𝑐𝑘𝑘 𝑐𝑐𝑘𝑘−1

𝑝𝑝𝑝𝑝(𝑐𝑐1, … 𝑐𝑐𝑘𝑘−2) 𝑐𝑐𝑘𝑘 𝑐𝑐𝑘𝑘−1

𝑑𝑑, 𝑓𝑓

𝑑𝑑, 𝑓𝑓𝑑𝑑∗, 𝑓𝑓∗min
∀−𝑀𝑀≤𝑑𝑑∗≤+M

∀𝑓𝑓∗∈
R0
𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀
𝑅𝑅𝑅𝑅𝑅

𝑝𝑝𝑝𝑝(𝑐𝑐1, … , 𝑐𝑐𝑘𝑘−1) 𝑐𝑐𝑘𝑘+1

𝑝𝑝𝑝𝑝(𝑐𝑐1, … 𝑐𝑐𝑘𝑘−2) 𝑐𝑐𝑘𝑘−1 𝑐𝑐𝑘𝑘+1

𝑝𝑝𝑝𝑝(𝑐𝑐1, … 𝑐𝑐𝑘𝑘−3) + 𝑐𝑐𝑘𝑘−1 𝑐𝑐𝑘𝑘−2 𝑐𝑐𝑘𝑘+1

𝑑𝑑, 𝑓𝑓

𝑑𝑑, 𝑓𝑓𝑑𝑑∗, 𝑓𝑓∗

min
∀−𝑀𝑀≤𝑑𝑑∗≤+M

∀𝑓𝑓∗∈
R0
𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀
𝑅𝑅𝑅𝑅𝑅

𝑑𝑑, 𝑓𝑓𝑑𝑑∗, 𝑓𝑓∗

Case 2 Case 3

Cost Computation (1/2)

․4 Items
1. Accumulated spacing deficit of active critical cell pairs
2. Accumulated net span cost [APA99]

1. This term for WireLength First (WLF) mode
2. For displacement first mode (ORIG), this term is always equal to 0

3. Accumulated cell displacement
4. Accumulated number of cell flips

․The spacing deficit of a cell pair 𝑐𝑐𝑐𝑐 is defined as follows
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐 = max

∀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∧𝑐𝑐𝑐𝑐∈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝐻𝐻𝐻𝐻
(0, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑐𝑐))

19

簡報者
簡報註解
Whenever we relocate a cell to a certain position, it has a cost right?
Our cost is not a single value. Instead, it is an object consisting of several attriburtes.
How do we compare 2 cost objects. We will first compare the first attribute. Then second if there is a tie, and so on.

So the first item/attribute indicates the severity/level of a violation.
The second term is used for minimizing wirelength.
We have 2 modes, the first mode ORIG targets to minimize displacement, And the second mode WLF, minimizes wirelength.

Cost Computation (2/2)

20

𝑐𝑐𝑘𝑘∗𝑐𝑐𝑘𝑘−1∗ 𝑐𝑐𝑘𝑘−1

∆𝑃𝑃𝑘𝑘 𝑐𝑐𝑘𝑘−1, 𝑐𝑐𝑘𝑘 ,𝑑𝑑∗,𝑑𝑑, 𝑓𝑓∗, 𝑓𝑓 =

𝑑𝑑∗, 𝑓𝑓∗ = 𝑅𝑅𝑅

𝑑𝑑, 𝑓𝑓 = 𝑀𝑀𝑀𝑀

𝑐𝑐𝑘𝑘

A Constraint

< 3< 5

A B C

Critical Condition!

𝑐𝑐𝑘𝑘−2∗

Item (1): max(0, 3 − 1) = 2
Item (2): ORIG: 0, WLF: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑘𝑘
Item (3): 𝑑𝑑
Item (4): 1

1

A Partial Layout

簡報者
簡報註解
This figure shows how we compute the cost object during the placement process.

Extensions for Mixed-Cell-Height Designs

․2 techniques
 Cell Virtualization
 Movable Region Computation

21

簡報者
簡報註解
The cream of the crop.
We extend our IRM/SRDP to handle mix cell height designs without constructing new recurrence by 2 techniques.

Technique 1: Cell Virtualization

․Slice each multi-row height cell (parent) into several single-row height cells
(children)
 Parent: a real cell
 Children: virtual cells

․Whenever a child moves, its parent and all siblings move (vertical alignment)

22

簡報者
簡報註解
The first techniques: cell virtualization/slicing
We slice each cell into several single-row height cells.
We do IRM on virtual cells and whever a virtual cell moved, all its siblings got move in the same way for alignment.
We don’t want to tear apart any multi-row height cell, right.

So, the remaining problem is, how do we move multi-row height cells without overlapping other cells in other rows?

Technique 2: Movable Region Computation (1/2)

․The remaining problem is how to prevent a multi-row height real cell from
overlapping cells in other rows after it is relocated.

․Each virtual cell has a movable region (MR).

․Compute Left/Right Movable Distance 𝑀𝑀𝑀𝑀𝑙𝑙, 𝑀𝑀𝑀𝑀𝑟𝑟 by (see example on next page)

𝑀𝑀𝑀𝑀𝑙𝑙(𝑣𝑣𝑣𝑣𝑖𝑖) = min
∀𝑣𝑣𝑣𝑣∈𝑐𝑐,𝑣𝑣𝑣𝑣≠𝑣𝑣𝑣𝑣𝑖𝑖

𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑀𝑀𝑀𝑀𝑟𝑟(𝑣𝑣𝑣𝑣𝑖𝑖) = min
∀𝑣𝑣𝑣𝑣∈𝑐𝑐,𝑣𝑣𝑣𝑣≠𝑣𝑣𝑣𝑣𝑖𝑖

𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣, 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡

where

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑙𝑙𝑙𝑙𝑙𝑙, 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙.𝑝𝑝 ≠ 𝑙𝑙𝑣𝑣𝑣𝑣𝑖𝑖 .𝑝𝑝
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑟𝑟𝑣𝑣𝑣𝑣, 𝑖𝑖𝑖𝑖 𝑟𝑟𝑣𝑣𝑣𝑣.𝑝𝑝 ≠ 𝑟𝑟𝑣𝑣𝑣𝑣𝑖𝑖 .𝑝𝑝
𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

23

簡報者
簡報註解
So it gives us the second technique. MVC.
Each cell has a movable region.

Technique 2: Movable Region Computation (2/2)

․Movable Region (MR) of 𝑣𝑣𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑖𝑖 . 𝑥𝑥𝑙𝑙 − 𝑀𝑀𝑀𝑀𝑙𝑙 𝑣𝑣𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑖𝑖 . 𝑥𝑥𝑟𝑟 + 𝑀𝑀𝑀𝑀𝑟𝑟 𝑣𝑣𝑣𝑣𝑖𝑖
 e.g., 𝑀𝑀𝑅𝑅(𝑣𝑣𝑣𝑣2) = 𝑣𝑣𝑣𝑣2. 𝑥𝑥𝑙𝑙 − 𝑎𝑎, 𝑣𝑣𝑣𝑣2. 𝑥𝑥𝑟𝑟 + 𝑐𝑐

․If a cell is going to be relocated outside its MR, cost = ∞

․Current spacing (𝑐𝑐𝑐𝑐) should be updated after SRDP processed a row 𝑖𝑖
 Need to re-compute 𝑐𝑐𝑐𝑐 of all cells in relevant rows only
(i.e., rows containing all processed virtual cells in row 𝑖𝑖 and their siblings)

24

𝑎𝑎

𝑑𝑑

𝑐𝑐

𝑐𝑐1

𝑣𝑣𝑣𝑣1

𝑣𝑣𝑣𝑣2

𝑣𝑣𝑣𝑣3

𝑙𝑙𝑣𝑣𝑣𝑣2
𝑏𝑏 𝑟𝑟𝑣𝑣𝑣𝑣3

𝑟𝑟𝑣𝑣𝑣𝑣2

𝑐𝑐2

𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐3
𝑒𝑒

�
𝑀𝑀𝑀𝑀𝑙𝑙 𝑣𝑣𝑣𝑣2 = min 𝑎𝑎, 𝑏𝑏 = 𝑎𝑎

𝑀𝑀𝑀𝑀𝑟𝑟 𝑣𝑣𝑣𝑣2 = min 𝑐𝑐, 𝑒𝑒 = 𝑐𝑐

簡報者
簡報註解
If a cell is relocated out of thits movable region, the cost will be infinity.
We use the figure to show how the MR is calculated.
For vc2, how left it can moved without overlapping, it’s min (a, b) = a
And how right it can moved without overlapping. IS it min (c, d) ? No.
Because the next cell of vc3 is the same as the cell of vc2.
Which means c1 and c2 can be adjacent swap, so we ignore d. It’s min (c ,e) instead.

With these 2 simple but powerful techniques, we can move single and multi-row height cells simultaneously instead of a separate process.
Besides there is no sacrifice. Computer MR is linear.

Intra-Row Move

25

簡報者
簡報註解
So that is IRM,

Just need to remember to compute movable region right before you call SRDP

Acceleration

․Parallelization (Single-Cell-Height Designs, ORIG mode)
 Let each thread take a row.

26

Row n

Row 3

Row 2

Row 1

Thread m

Thread 3

Thread 2

Thread 1

簡報者
簡報註解
Parallelization is simple, for single height designs and we don’t consider wirelength
Then all rows are multually indepaeandent, so let each thread take over an individual row. That’s it

Overall Flow

27

Non-
Overlapping

Design

• Constraint File
• Type File

Constraint
and Layout

Analysis

Intra-Row
Move (IRM)

(Dynamic
Programming)

Global Move
(GM)

(Integer Linear
Programming)

Refined
Design

Global Move (GM)

․To resolve remaining constraint violations after IRM

․A global move contains 3 parts:
1. Candidate Cells Finding

 All violated cells
2. Candidate Empty Spaces Finding and Best Location Finding

 For each candidate cell 𝑐𝑐, find and record the best location of all available empty
spaces without making any condition hold into 𝑐𝑐.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

3. Best Candidate Empty Spaces Choosing and Cell Moving
 ILP

 min𝛼𝛼 × #𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝛽𝛽 × #𝑡𝑡

․A multi-round GM would terminate when the number of constraint violations stops
to decrease.

28

簡報者
簡報註解
After IRM, there might be some violations leftover. Which means the violation can not be resolved by moving cells within its orignal row only.
Which means we need to move it out of its original row.
So we use an ILP based GM to solve the leftovers.
The objective is to minimize number of violations as well as the total cell displacement.

Experimental Results

․Experiment Setup
 Language: C++
 ILP: Gurobi Optimizer
 Parallelization: OpenMP
 Design Explorer: OpenGL
 System: CentOS 6.9
 CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz with 32 threads
 Designs

 Single-cell-height: OpenCores
 Mixed-cell-height: ICCAD 2017 Contest Problem C

 Cell Library: NanGate 15nm Open Cell Library
 Synthesis: Synopsys Design Compiler Graphical
 Initial Placement: Cadence Encounter Digital Implementation System

29

簡報者
簡報註解
Improv

Benchmarks

․4 single-cell-height, 3 mixed-cell-height

30

簡報者
簡報註解
We have 4 single height designs and 3 mix cell height designs

Benchmarks

31

簡報者
簡報註解
These are the snapshots of our 7 designs
Note that there are 4 macros in pci.

Handle a macro is easy, in IRM, if it got moved, we directly set the cost to infinity.

Results of Different Modes: Table

․A 2-cell approach
 Each condition is a critical condition
 Slightly modify FVR to find 2-cell spacing constraint violations

․Our multi-cell approach can resolve all constraint violations with a better total cell
displacement (> 3x less), wirelength (> 2x less), and runtime (up to 33% less) than
those in a 2-cell approach

32

簡報者
簡報註解
We compare our results as the same configuration 2-cell method.
We simulate a 2-cell method by treating each condition as critical.
And modify FVR to find 2-cell violations.

As you can see, our approach …..

Results of Different Modes: Example

33

2-cell method Our (multi-cell) method

簡報者
簡報註解
We use an example to show differences of the displacement betw/ 2-cell and our method
A red box is a 3-cell constraint violation.
A blue point is a separation of a cell pair.
And a red arrow is a global move
A turn around arrow is a vertical flipping.

As you can see, 2-cell method separate more cell pairs than our method did. Because these all are 2-cell violations.

Conclusions

․We proposed a practical detailed placement approach considering multi-cell
spacing constraints

․We proposed cell virtualization and movable region computation techniques to
extend IRM to handle mixed-cell-height designs

․Experiment results showed the efficiency and effectiveness of our approach

34

簡報者
簡報註解
Conclusion

35

簡報者
簡報註解
Thank you everyone. If there is any question, feel free to ask.

	A Practical Detailed Placement Algorithm under �Multi-Cell Spacing Constraints
	Agenda
	Motivation (1/2)
	Motivation (2/2)
	Our Contributions
	Definitions (1/3)
	Definitions (2/3)
	Multi-Cell Spacing Constraint Example
	Definitions (3/3)
	Problem Statement
	Overall Flow
	Overall Flow
	Constraint and Layout Analysis (Critical Condition)
	Fast Violation Recognition (FVR) (1/2)
	Fast Violation Recognition (FVR) (2/2)
	Overall Flow
	Intra-Row Move: SRDP (1/2)
	Intra-Row Move: SRDP (2/2)
	Cost Computation (1/2)
	Cost Computation (2/2)
	Extensions for Mixed-Cell-Height Designs
	Technique 1: Cell Virtualization
	Technique 2: Movable Region Computation (1/2)
	Technique 2: Movable Region Computation (2/2)
	Intra-Row Move
	Acceleration
	Overall Flow
	Global Move (GM)
	Experimental Results
	Benchmarks
	Benchmarks
	Results of Different Modes: Table
	Results of Different Modes: Example
	Conclusions
	投影片編號 35

